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THE ASYMPTOTIC EXPANSION OF INTEGRAL FUNCTIONS
‘DEFINED BY TAYLOR SERIES

By E. M. WRIGHT
Professor of Mathematics in the University of Aberdeen

(Communicated by G. H. Hardy, F.R.S.—Received 277 February 1939)

1-1. Considerable attention has been devoted to the behaviour of the general
integral function for large values of the variable, and many important theorems have
been proved in this field. On the other hand, the behaviour of a large number of
particular integral functions has been studied in detail and their asymptotic expansions
for certain regions of the plane obtained. There is, however, a substantial gap between
the two theories. For example, much of the most interesting work on the general
integral function deals with the distribution of its zeroes and other values; but many of
the asymptotic expansions obtained for particular functions are not valid in the regions
in which these functions have zeroes.

In this paper and its sequels I propose to study several fairly wide classes of
functions defined by Taylor series; from the properties of the coefficients I deduce
asymptotic expansions of the function defined by the series. For the sort of functions
I consider we can usually divide the whole complex plane, with the exception of certain
“barrier regions”, into a number of regions R, in each of which the function is given
asymptotically by an equation of the form

J#) = ¥r(*) (1 +p), (1-11)

where ¥,(x) is an elementary function of x, such as an exponential or a power, with no
zeroes in R, and p, tends uniformly to zero as | x | tends to infinity in R. It then follows
that f(x) has only a finite number of zeroes in the region R and that the zeroes are to be
looked for in the barrier region between two regions R and R’, where we may hope to
prove that

J&) = Pp(®) (L4+p) 92 (x) (1+05)- (1-12)
It is usually more difficult to prove a result of this type than one of the type (1-11), but,
if we can do so, we can then determine the asymptotic distribution of the zeroes and
other values of f(x) very precisely. The deduction of information about this distribution
from the properties of the coefficients of the Taylor series is of course one of the central
problems of the theory of integral functions.

For such a purpose and for other applications it is necessary to prove that each
asymptotic expansion is valid uniformly in the appropriate region and to ensure that
these regions completely cover the plane. The point is best illustrated by an example.
For a particular function the expansion valid for | arg x | <47 (but valid uniformly only

Vol. 238. A 795. (Price 4s.) 52 [Published 23 January 1940

TR
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%;%
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. RIN®RY
WWWw.jstor.org


http://rsta.royalsocietypublishing.org/

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

\

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

Pl
A
//g\\

SOCIETY

SOCIETY

A A

OF

)

y
S

OF

Downloaded from rsta.royalsocietypublishing.org

424 E. M. WRIGHT ON

for |argx |<{m—e for every ¢>0) and the expansion valid for |arg (—x) |<im are
already known; but for many applications these are insufficient. We are not entitled
to use either expansion as we pass to infinity along the line* .#(x) = 1, nor can we
determine the distribution of zeroes near the imaginary axis.

The determination of expansions valid in the barrier regions and the proof that
each expansion is valid uniformly in the appropriate region add greatly to the length
and complication of the work and thus obscure the fundamental simplicity of the
method. But both these points are of great importance, and their careful investigation
leads to many of the essentially new results found here.

1-2. The particular type of function with which I deal here is that defined by
Jx) = cyteyx-teox? ...,

(n)

where ¢, = Tin+p)’
k and f may be real or complex, J7(k) >0, and ¢(¢) is a function satisfying suitable
conditions.

Mittag-Lefller (1905), Wiman (1903), Barnes (1906, 1907), Hardy (1905), Fox (1928),
Wright (1934) and other writers have found asymptotic expansions of functions which
are particular cases of f(x). Mittag-Leffler and Wiman discussed in detail the asymptotic
behaviour of the function

Their results are included in those of my Lemma 6 for the more general function

8
2

Z Tkn 1)

Hardy obtained expansions of his function

o] x?l

2, (nrayal

for the whole plane, including the barrier regions; this was a preliminary to his
main purpose, viz. the study of the zeroes. Barnes found expansions for various
special examples of our function, but not those valid in the barrier regions. Fox’s
work on the generalized hypergeometric function applies to part (but not all) of the
barrier regions; his method requires « to be real and rational. All these results are
special cases of those found here. In a previous paper (Wright 1935), I gave complete
results (without proof) for the generalized hypergeometric function; these are in part
corollaries of the theorems of this paper, and their proof will be completed elsewhere.

* We use Z(y) to denote the real part of y.
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ASYMPTOTIC EXPANSION OF INTEGRAL FUNCTIONS 425

The most general results concerning the asymptotic expansion of f(x) so far obtained
are due to Watson (1913), to whose work I am greatly indebted. He takes

$(n) e

w= I'(kn+p)°
but it is clear that there is no real loss of generality in taking g = 0; otherwise we have
only to replace x by ¢2x in our results. Watson imposes stricter conditions on ¢(¢) than I
do here; apart from this, his results correspond roughly to my Theorems 2, 4 and 6,
and do not apply to the barrier regions referred to above. In view of the importance
of his work, I make a detailed comparison of our results at a later stage (§2-5).

; (3) We suppose that ]‘(ft(:)- ) is defined for ¢=0, 1, 2, 3, ..., though if, for example,
14 . .

Tkt+p) has a pole at ¢ = n;, where 7, is a non-negative integer, our proofs and results
will be unchanged if ¢, x™ is replaced in f(x) by the residue of

m () (—x)
sinwt I'(kt+f)

at its multiple pole at ¢ = n,.
We write § = |«| and y = arg«. Since £(k)>0, we may always take |y|<im.
We choose arg x so that
—nm<argx—tany log | x| <, (1-31)

and arg (—«) so that —n<arg (—x)—tany log| x| <. (1-32)
With this determination of arg x we write
X, = X = xVk, X, = Xemils,

where s is any integer. It follows that

darg X = cosy argx—siny log | x|, ' (1-33)
so that —ﬂcgsy<argX<ﬂC§SZ. (1-34)

Thenumberseand ¢’, to be thought of as small, are any assigned positive numbers; the
real numbers £, k,, h are related to the properties of ¢(£). We use K to denote a positive
number, independent of x (and so of X), of the real variables , 0, v and w and of the com-
plex variables y, « and ¢, but possibly depending on «, §,7,¢,¢', 0,01, 04, i, 'y M, P, 11y, by, b
and any other parameters. The value of K varies from one occurrence to another. We
use K, and K, to denote fixed numbers (the same at each occurrence) of the type of K,
and the notation § = O(x) to denote that a number K exists such that | ¢ | <K|y]|.
It is to be observed that K does not depend on argx (or arg X); in other words,
statements involving K or O(...) are uniform in arg X throughout the interval of arg X
in question.

52-2


http://rsta.royalsocietypublishing.org/

L

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

%

A B

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

426 E. M. WRIGHT ON
By (1-31) we have argx = tany log | x|+ O(1).
Hence dlog | X| = cosy log| x| +siny argx (1-35)
=secy log| x|+ 0(1),
that is (k) log| X| = log| x|+ O(1).
It follows that ¥ = 0(X2W), X = O(xV/#0)), (1-36)

1-4. If ¢(f) satisfies suitable conditions, the form assumed by the asymptotic ex-
pansion of f(x) depends on the value of arg X. If |arg X |<im—e¢, the asymptotic
expansion of f(x) consists of one ‘‘exponentially large” expansion of the form

M
eX 3 Am X1l-om + O(Xl“alll+l)}
m=1

or the sum of several such expansions with different X, replacing X. In general

log f(x) ~ X

for some s. If |arg X | =>4m ¢, f(x) has an “algebraic’ asymptotic expansion and, in

general,
S(x) ~b(—x)%,

where 4, c are independent of . On the other hand, if arg Xis nearly 4 17, the behaviour
of f(«) is less simple and the asymptotic expansion is of the “mixed” type (1:12), i.e. it
consists of the sum of the two asymptotic expansions which are separately valid in the
two neighbouring regions.

However, all the above values of arg X may not be possible. By (1-34),

mCosy 1
| arg X | <y ﬂﬁ(K).

There are now three cases.

(i) Ifﬂ(%)<% (i.c.if [k—1|>1), we have
R

for a positive ¢. The asymptotic expansion of f(x) consists of one exponentially large
expansion or the sum of several such expansions. Theorem 2 gives complete informa-
tion in this case.

(i1) Ifﬁ(%) =} (l.e.if |k—1| = 1), we have | arg X | <47. In the x-plane, the spirals
arg X = 417, i.e.
argx—tany log | x| = 4+ $0mwsecy = 4, (1-41)
coincide. Apart from the neighbourhood of the spiral (more precisely, throughout
the region in which |arg X |<}m—¢), there is a single exponential expansion given
by Theorem 4. Near the spiral there is a mixed expansion given by Theorem 8.
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(i) If ﬁ,’(%)>%— (i.e. if |k—1|<1), we require three theorems. In the x-plane,

the spirals arg X = + 1, i.e.
argx—tany log | x| = 4 3dmsecy, (1-42)

are distinct (since dsecy<2) and divide the plane into two connected regions.
In the interior of one of these regions (more precisely, when |arg X |<}n—¢) we
have a single exponential expansion given by Theorem 4; in the interior of the other
region, when |arg X | >4n-+¢, the (algebraic) expansion is given by Theorem 6, while
Theorem 7 gives the mixed expansion valid in the neighbourhood of the spirals.

When « is real, the results are slightly simplified. In case (i) the expansion consists
of just one exponential expansion, except near the negative half of the real axis, where
the expansion is the sum of two exponential expansions. Incase (ii), thespiral arg X =47
becomes the negative half of the real axis, while in case (iii) the spirals arg X = 447
become the straight lines arg x = Jm«.

FORMAL STATEMENT OF RESULTS

2-1. After this preliminary sketch we proceed to state our results precisely in the
form of theorems. We shall say that ¢(¢) satisfies condition A for a certain set of values of
¢t if an integer M >0 and numbers

AI’AZ’ ooy AM’ 061,062, ""“M‘*}'l

exist such that Bl =B () = .. =B (@) >R (ty,)
g ¥ x4, 1 .
and I(kt+-f) mz:lr(/ft—l-fxm)+O(T(Kt+aM+l)) (2-11)

for this set of values of ¢; if M = 0, (2-11) takes the form

i tp = ey

It is to be noted that we only require (2-11) to be true for one value of M.*
We write E(y) ={Z(y)}* (Ly)=1), E(y)=1 (Z(y)<1),

I(y) for the asymptotic expansion
M

yey{ X Ayt 0(1/%‘“M""‘E(y))},
m=1

H(—x) for the sum of the residues of

k(t) = — mp(t) (—x)*

sinwt I'(kt-+f) (2:12)

* Theorem 9 shows that ¢(¢) satisfies condition A if it has an asymptotic expansion of the usual
type in descending powers of ¢.
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at those of its poles other than ¢=0,1,2, ... which lie to the right of the straight line
JA(kt) = hy, and S for the integer satisfying

Fosecy —3<<S<idsecy3. (2-13)
Theorem 1. If (i) | arg X | < im,
(i1) hz=3—7 () (2:14)
and (iii) ¢(¢) is regular and satisfies condition A when K (kt) > h,, then
S
J(x) = 3 I(X)) +0(xm*). (2-15)
s=-9

Theorem 2. If ﬁ( )< and if conditions (i1) and (iii) of Theorem 1 are satisfied, then

Jix) = £ I(X). (2:16)
Theorem 3. Ifj?( ) % and if conditions (1), (ii), and (iii) of Theorem 1 are satisfied, then
S(x) = LX) 4 O(&Me).

Theorem 4. If ﬁ(%))%, |arg X | <dw—¢', and conditions (ii) and (iii) of Theorem 1 are
satisfied, then

Let us assume Theorem 1 for the moment; we shall show that Theorems 2, 3 and 4
are corollaries. First, if
Cos 1
( .31’ — ﬂ(z) <1,

we have |arg X | < ~-»99§J <in—K.

Hence condition (i) of Theorem 1 is satisfied for all x. Also

cosargX>cos 6‘57>K R(X)>K|X|,

and so Xinte — Q(X1-on1g¥) — O(Xb-eu1 (YE(X))

and the term O(X"%¢) in (2-15) can be absorbed in the error term of 7(X'). This proves
Theorem 2.

If Ji(%)}%, i.e. §secy<2, then § = 0. Hence Theorem 3 is merely a special case of
Theorem 1. If | arg X | <{m—¢’, then
R(X)>K|X]|, Xnre=O(Xt-wrrXE(X))

and Theorem 4 follows from Theorem 3.
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2-2. When ,ﬁ(%)<%—, Theorem 2 gives the expansion for all x. It only remains to

. . 1
consider the expansion when ﬁ(;{) =} for values of x not covered by Theorem 4.

Theorem 5. If

(i) ﬁ’(%)}%—, O<0<max{1,ﬂ(go—;1——%)}, |arg X | =dn+o0,

(ii) @(t) us regular when R (kt) > hy, except for a finite number of poles, and
(i) | B(2) | <K | ¢] i ol (2:21)
when B (kt) > hy and | t | > K, then

S(x) = H(—x) 4 O(X"=*).
Theorem 6. If

(i) ff(—lk)>%, c>0, |argX|=in+to,

(ii) B(t) is regular when J (kt) > hy, except for a finite number of poles, and
(i) B(2) = O(¢%)
when 7 (kt) > hy and | t |> K, then
S(%) = H(—x)+ O(&X").
If Theorem 6 is true for any particular 0> 0, it is true for all larger ¢. Hence ¢ may
be supposed to satisfy the condition of Theorem 5, and Theorem 6 is an immediate
corollary of the latter theorem; for, if 7> 0,

l tK| <K| t |2 B +ha—% goolt]

2:3. Theorem 6 gives us the purely algebraic expansion for the relevant values of
arg X. We have now only to consider the neighbourhood of the spirals (1-41) and (1-42).
Here we have “mixed” expansions. Theorems 3 and 5 give us certain information for
these regions, but this is not very precise. For example, if arg X = 4,

I(X) = O(X¥-meX) = O(XM)
by (2:14) and so Theorem 3 tells us only that f(x) = O(X™*¢),

If #(1/k) >}, we prove a result uniform in the region |arg X | <{m+-u, where x is a
certain positive number. This region encloses both the spirals (1-42).

Theorem 7. If

. I, . [mcosy m w

(1) ﬂ(})>§, O<,u<m1n=——~3——— 2,2},
(if) |arg X | <}m-+p, (2-31)
(i) hy = — R (1) (2:32)
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(iv)  @(¢) is regular when K (kt) > h,, except at a finite number of poles, and
(v)  ¢(¢) satisfies condition A when R (kt)>hy and | t| > K, then
Slx) = I(X) + H(—x) 4 O(X*te), (2-33)
If 2 (1/k) = %, there is only one spiral, viz.
argx—tany log | x| = m, (2-34)
as we saw in § 1-4. On this spiral we have
arg (—x) —tany log | x| = 0.
We write X' = (—x)lrkerilc X" — (—x)lrg=milx,
where arg (—x) is determined by (1-32). It is readily verified that
X =X, X' =X [(argX>0); X =X, X" = X(arg X<0).
We prove a result uniform in the region
|arg (—x)—tanylog | x| |<m—e¢,
i.e. a region enclosing the spiral (2-34).
Theorem 8. If
(1) Rfx) =&, 0<p'<gm,
(ii) m—p <]arg X|<im, ie. |arg(—x)—tanylog|x|| <24,
and conditions (iii), (iv) and (v) of Theorem 7 are satisfied, then
Flx) = I(X") +I(X") -+ H(—~x) + O(Xrs+).

2-4. Theorems 2, 4, 6, 7 and 8 provide us with the asymptotic expansion of f(x) for
all x, provided that ¢(¢) satisfies their conditions. The following theorem connects the
expansion of ¢(¢) postulated in condition A with a more familiar type of expansion.

Theorem 9. If an integer N =0 and numbers a,, ay, ..., Ay, fy, oy -+, fly 1 are known such that

R () SR () <o <R (py) <R piy 1)

and b(1) — 3 a t-mn O (1)

n=1

Jfor some set of values of ¢, then an integer M =0 and numbers A, Ay, ..., Ay, 1y %oy ooy Uppy g CON
be calculated such that ¢(t) satisfies condition A for those values of ¢ belonging to the set for which

|argkt|<m, |arg(ki+f)|<m, |arg (ki+f+um)|<m (1<n<N41).

In particular Cag =t ayy =By
This is an immediate consequence of the well-known result
1 AT o P _
o~ gherioe). e
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in which 6540 and 4, is a known function of x, « and /, and which is valid when

|arg (kf) |<m and |arg (ki+a)|<m.
From this we have

S S I
it f) = BTt put) T\t piu+ L))’
b6 N & 1
d _ n,r
and so Tt p) ~ 2 B Tkt bp ) O(Hmwm +ﬂ)) ’
WhCI’C Rn+1+ﬂ(/"n) >ﬁ(ﬂN+l>‘

This is equivalent to (2:11).

2:5. Watson’s results. We are now in a position to describe these results in more detail
and to explain where we are able to make advances. Watson (1913) proves results
equivalent to those of Theorems 2 and 4* with ¢(f) subject to more restricted conditions,
viz. (i) that ¢(¢) is regular when % (kf) >h, and (ii) that there is a positive number A
such that, when | #| > K and | arg (kf) | <3m-+A, ¢(f) possesses an asymptotic expansion

§(t) = 9] 2 a1+ Ry (2:51)
n=1

for all N with | a,|<C,Csn! and | RytN*! | <CyCYN!, where C,, C,, C;, C; are numbers

independent of £, n and N. Condition (ii) enables Watson to use the powerful theory

of asymptotic series which he had previously developed (Watson, 1912); in fact, when

this condition is satisfied, ¢(¢) can be expanded in a convergent series of inverse factorials.

Hence in Theorems 2 and 4 my contributions are:

(i) Itis enough for ¢(¢) to have an asymptotic expansion of the type (2-51) for some
N and without restriction on the magnitude of the coefficients in the expansion; from
this we may find an asymptotic expansion of f(x) to a corresponding degree of approxi-
mation.

(ii) The expansion of ¢(¢) need not be in inverse integral powers.

(iii) The expansion need only hold good for % («#) =k, instead of for

| arg («t) | <{m+A.

(iv) The results are uniform in arg X within the limits stated.

Of these (i), (iii) and (iv) are substantial advances, but (ii) is a trivial consequence of
(i). In my proof of Theorem 1, I use a transformation due to Watson which greatly
simplifies the work.

* Except that “uniformity in arg X”’ is not proved. For example, Watson’s formula (10) on p. 24

of the paper referred to above is not true uniformly in the interval of arg y given, though it is true for
any particular value of arg y in this interval.

Vor. 238. A. 53


http://rsta.royalsocietypublishing.org/

A
A
A
) N

[~

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L\

[

/J
A

\

a

a ¥

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

432 E. M. WRIGHT ON

Theorem 6 is implicit in a remark of Watson’s. He does not give the proof in detail
(itisin any case fairly trivial), and I have felt it worth while to prove the new and more
general Theorem 5, which is also useful in the proofs of Theorems 7 and 8.

These last two theorems give the expansion in the important (and troublesome)
“barrier regions”. So far as I know these theorems are entirely new.

2:6. A preliminary lemma. We have proved Theorem 9 and shown that Theorems
2, 3 and 4 follow from Theorem 1, and Theorem 6 from Theorem 5. Hence we have
only to prove Theorems 1, 5, 7 and 8. The rest of the paper is devoted to this. Our work
is simplified by

Lemma 1. Without loss of generality we may take hy =0 in Theorem 1 and hy =0 in Theorems
5,7 and 8.

We prove this assertion for Theorem 7; the proof for the other theorems is similar.

Let us suppose that 4, <0 and write*

- ‘ h,
i Lt
so that j,>1. We writeT
| io p(n) &
fo(x) =X { pX F(Kﬂ Xﬂ) |f( )}

n=-J,

I O F N N COF
n=-j, F(Kﬂ+ﬂ) n= OI (K?’l—l ﬂo)

where $o(t) = d(t—Jo)» Po=F—Kjo

Since ¢(¢) satisfies conditions (iv) and (v) of Theorem 7, it follows that ¢,(¢) satisfies
the same conditions with

bzo*“h o (K) =

replacing 4,; in fact,

¢O(t) __ ¢(tw.]0) . A K‘{lm

L(kt+py)  I(k(t—jo) +F) mslr( ( ““Jo) |“0‘m) (Kt o — &)

M KAm 1
a rn%lf@?;;m,o) + O(T(Kf“l‘ a/\/[jll-‘l_,;)’)

when % («kt) > h, , and |¢]> K.

* As usual, [v] is the largest integer not greater than v.

—_ ~h
¢( JEN in the first sum by the residue of

I(f—«l)

T If T t(j/)’) has a pole at t = — (1 </<j,), we replace
(1) (=)
fk([) sin 7t I'(kt+ f8)

at its multiple pole at / = —/. The proof of Lemma 1 follows the same lines, while the details of the
proof of Theorem 7 for f(x) are preciscly as before and (2-33) is still true.
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Hence, if Theorem 7 is true for A,>0, we have

Jo(x) = Lo(X) +Hy(—x) + O (XT20%e),

where I,(X) — XeX{ S A, X-omoy O(Xi-au 1o E(X))}

m=1
= x/0 J(X),

and H(—x) is the sum of the residues of

holt) = 1&?5?&3}1,) = 2 R{E=50)

at its poles to the right of % (xt) == k, ,, except those at ¢=1,2,.... Now

R O P S N OF

n=1~jor(’<”+ﬁ) - 1F(K”+/’)o)

is the sum of the residues of £,(¢) at its poles at £=1,2, ..., j,—1. Hence

L) = Hy(—2)—w°. 12 ) %nﬁcﬂ)

is the sum of the residues of k,(¢) at its poles to the right of #Z(kt) = £, , except those at
t=JoJo+1,...,1.e. the sum of the residues of x/0k(£) at its poles to the right of 2 («t) = £,
except those at =0, 1,2, ...; and so

L(x) = x/oH(—x).

Hence J(x) = 2770 fy(x) — n_Z_] T?IEZZC;)

:[(X)-I_x“joL( ) 75]{(/0)/( +O(Xh20 gzmme)

— I(X) +H(—x) +O(X*e)

by (1-36), and so Theorem 7 for negative 4, follows from the same theorem for 4, > 0.
It is clear that the rest of the lemma may be proved similarly. We therefore take
h,=0 and £,>0 in the proofs which follow.

Proor or THEOREM 1

3-1. Watson’s transformation (Watson 1913, p. 23). This transformation enables us to
deduce Theorem 1 for general « from results for f(x) when « = 1; the latter results,
however, have to be found for all values of arg X and not only for those for which
| arg X | <{m.

53-2
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We choose # so that A, < h <k, +¢ and £ is neither an integer nor an integral multiple
of Z(«). Since we may suppose that ;>0 by Lemma 1, we have 2> 0. We write

w=h—h>0, j=][h], jl:l}ﬁ}é/c_):l’ r=|t|, 0=arg(kt) (—m<l<m),

Y() = %¢(£) Fly) = %+1]¢f<;nzr%)
| msin {(¢—«) tm} $(2) &'
and X = Sin (rem) i (em) L(kt+)”

Watson’s transformation is contained in
Lemma 2. If ¢ = 2p-+1 is an odd non-negative integer and

0| arg X |<dmd+mcosy—m|gcosy—4], (3-11)
then fx) = 3 F(X,)+O0(X").
s==p

Watson indicates the proof, but does not give it in full. As I require the lemma under
wider conditions than his (e.g. he excludes equality in (3-11)), I give a complete proof.
We denote by D, the straight line % (k) = £ in the -plane, described in an upward

direction. Since
J<h<j+1, R&)j<h<R(x)(j;+1),

the points t= j——;:—} , J+-K——2, T T af PO =3 (3-12)
lie to the right of D, and the points
B e
t——K, PRI Ji 1L ..

to the left of D,. The points (3:12) are the poles of y(¢) to the right of D;.
We observe that ¢ = 76~ and that

DOt

—R(apy1) —h<$—R()) —h = §—R(a,) =y —o< —1—0 (3-13)
by (2-14).

We require
Lemma 3. If (3-11) s satisfied and if either (1) J(kt) = h, the distance of t from each of the
points (3:12) is greater than K, and r| X |1 is sufficiently large or (i) £ (kt) = h, then

| x(0) | <Kr=t=e [ X"

Let us suppose that one or other set of conditions is fulfilled. Then ¢(¢) satisfies
condition A and so
<
L(xt+p)| [ I(ki+ay) |

< Kri=7 exp {dr(cos 0 log (ed=1r=1) +0sind)}
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by (2-41). Since ¢ is at a finite distance from the poles of y(#), we have
. l X(t) l <Kr%—,@(lx1) eVl,

where
vy =(r,0,%) = r{m | gsin (0 —y) —0sinf | —nd|sind | —m|sin (6 —y) |
+0dsin (0 —arg X)+dcosf log (e| X|d-1r71)}
<r{|sinf |(m|qcosy—0&|—md—mcosy+8|0|+8|arg X|)+drcosflog (K| X|r 1)}
<drcosf log (K| X |r1)

by (3:11), since | 6 | <.
Now, if condition (ii) is satisfied, dr cos @ = % so that

v <hlog (K| X|r71).

On the other hand, if condition (i) is satisfied, we may suppose 7 large enough to make
log (K| X|r~1)<0, so that
v <drcosflog (K| X|rY)<hlog (K| X|r "),
since drcos # >h. Hence, in either case,
| (0)| <KAo+ | X |f oo | X
by (3:13).

It follows from this lemma that
1

Q =~ x0)d
converges and that | Q | <K | X |

We can now choose a sequence of values of R tending to infinity such that every
point on the circle |¢| = R is at a distance greater than K from the points (3:12).

Consider fx(t) dt taken along the arc of this circle to the right of D,. By Lemma 3 the

integral is O(| X |* R~¢), and so tends to 0 as R tends to infinity. Hence, by Cauchy’s
theorem, @ is equal to the sum of the residues of x(#) at its poles to the right of D, that
is, at the points (3-12). Hence*

Q — § sin (gnm/k) §(nfk) X» 2 H(n)x"
nej+1 KSin (na k) D(n+f) 5011 (kn+f)

B § é exp(23nﬂi/K)¢(n/K)X"__ 2 ¢(n)x"
Mn:j+1 s==p kI’ (n+f) n=j,+1r<’m+ﬁ)
I OF SO O

T2 ST+ f) gt Tt f)

b . .
= X F(X)—f(x)+0(X7) + 0 (x"), (3-14)
s==p
* We appear to assume here that no two of the points (3-12) coincide, i.e. that & is not a rational
number. A little calculation will show that, if two of the points (3-12) coincide, there is still only a
single pole at this point and its contribution to our result is such as to leave (3-14) unaltered.
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436 E. M. WRIGHT ON
and so we have flx) = & F(X,)+0(X/) + 0(x1) + O (X"

P
= ¥ F(X))1 O(X")
s=—p

by (1-36). This is Lemma 2.

3:2. The asymptotic expansion of the function I'(y). Let us suppose for the present that
K (t)=h>h,>0. It follows from the properties of ¢(#) that y(¢) is regular and that

A o
Terg) 2Tl e, (F<t+ocM+1>)'
Now t=h>hy >3 R () =5 R(ty1) > — T (@),

and so I'(¢-+a,,,,) is regular. Hence, if

Y M A4,
¥ (t) = L (t+ay) {f(wt“-?/'j'} — X (>t4—oc,,,)}’

m=1

¥, (t) is regular and | ¢, (¢) | <K. Again, if

= S =% Y pgy = s iy
o Xag+1 (Ta y) o r(?’l*{-T)’ l<y) n:‘%“vnr(n"F“) ’
M
then Fly) = 2 4,,5(a,,y) +11(y) + O (y). (3-21)
m=0

For the moment we assume the following lemmas which we shall prove in §§3-3
and 3-4.
Lemma 4. For all y+0 and any integer P> 1
S(r,y) = yirer="% 0y
YY) =y T — X )
=Y A G R
where —m<argy <.
Lemma 5. Let ,(¢) be regular and bounded when R (t) =h. If 7 (y) <0, then F,(y) = O(y"),

while, if R(y) =0, then )
Fi(y) = O(y") 4 O(y*~*ev E(y)).

From these two lemmas and (3-21) we deduce at once that

Fly) = 1(y) +0(y") (8-22)

for all y.
Let us take | arg X | <$7. We choose ¢ in Lemma 2 so that
dsecy—1<<g<dsecy+1. (3-23)
Then tnd+mcosy—m|gcosy—0|=4nd=0|arg X/,
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and so (3-11) is satisfied. Hence

S = £ 1X) +0(x)

by Lemma 2 and (3-22), since X; = O(X) for |s|<K.
To deduce Theorem 1 it only remains to show that

S X))+ s I(X) = 0(xm),

s=5+1 s=—b
since h<<h,+e¢. By (2-14), h>h; =% — % (a,), and so
I(X,) = O(X§#¢%) = O(X"e%).
Hence we have only to show that % (X,) <0 for S+1<s<p and for —p<s<—S5—1.
By (2-13) and (3-23) S=410secy—3%, p<idsecy.

Hence for the values of s we are considering

|arg X, | ::%argX+2m§057 22(5—]—1[;#005)/_ larg X |
__ mcosy (dsecy

V*ugm—( 5 +1)—~]argX[

T oSy F
=gty —lag =g
by (1-34). Also
|arg X | = larg X+ 2877;057/ ngw;osy%«[ arg X | <m-F|arg X | <3m.
Hence % (X,) < 0.

To complete the proof of Theorem 1 we have now to prove Lemmas 4 and 5.

3-3. Proof of Lemma 4. We prove a more general result of which Lemma 4 is a par-

ticular case.
Lemma 6. If 0<<o,<<4m and

o] xﬂ
ST ) = D)
then for all x+ 0 and any integer P=1
Sk, 75 %) ! py Xl‘TeXS——P):}l——ﬂ——" +O(x7)
7 K larg X,| <37 +ou * p=1 (T—'pK) .

If we put « = 1 and ¥ = X = y, this is Lemma 4.
Since Lemma 6 is trivial when | x| < K, we may suppose that | x| >¢msin7!, We put

r, = 1 and choose ,
! rz>|x|b‘-lsecyeﬂltanyl. (3.31)
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By (1-31) and the definition of X,

' Xs' — ] x I d-1secy garg Xstany
and so, if |arg X | <, r<| X, | <7, (3-32)

The contour C; (i=1,2) consists of three parts, viz.: (i) the real axis from 4 = — o0
to u = —r;, with argu = —m, (ii) the circle |u| = 7, from arg u = —7 to arg u = and
(iii) the real axis from u = —7; to u = — oo, with argu = n, described in that order.
By (3-32) those of the points u = X, for which |arg X | <7 lie between C, and C,.
If necessary we deform C, and C, slightly so that |u*—x|>K on C,; and so that, if
arg X, =+ for any s, the corresponding point # = X, does not lie between C, and C,.

By (8-31), |u|>]| x| on C, and so, since

__L__, — _l__f YTk pU du
I'(kn+71)  2m), ’
we have Sk, 75 %) = Ly S| ure (ﬁ)n du— L f W
> 2mi 1= Cz ur omi ) o uk—x

:_:_l__J‘ Mdu_l_4 }_‘ Xl TgXa

2m) ¢, uk—x K larg x| <7

by Cauchy’s theorem, since u* = x at the points u = X .
Now we have on C}, for any P>1,

ux P oybx WP+ Poybx w P+ Dk
xS aP—x) b T ( )
Hence Lt [ ¢4 EP ’Lff UPK=T ¢ dly - O(x"’f | uP+DxT | | dy |)
2m) ¢, uk—x p=12m G
P-1  x=b )
TR O
and so Sk, 75 &) = ! DI, G TeXé—*PZ_l vt +0(x~F)
Klarg x,| < p= 1T( PK)
1 P-1 b
:}]argxfllq-nw.X“}*TeXs pjlf(rx pK) 0,

since the rejected terms can be included in the error term.

3-4. Proof of Lemma 5. We take | argy | <37 and we write 5 = argy, ¢ = r¢ and

vi(8)
g(t) = Tt )
Lemma 7. If (1) R(t) = h, or of (1) B(t) =h and r=c¢|y|, then
lg(t) | <K|y|"rt-vexp{rsind(6—y)}. (3-41)
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When %(t) =h, we have | ,(¢) | <K and

1 1 ¢l 1
I(t+a) <2w)%ﬁ*7—?{1 +0(¥)}'
Hence |g(t) | <Krt=2@ exp{rcosfdlog (¢|y|r1)+rsind(0—y)}. (3-42)

If condition (i) is satisfied, then
|g(t) | <Krt=#@ exp{hlog (e|y|r 1) +rsind(0—n)}
= Kri=#@=h| y|hexp {rsind(6—7y)}.
The result follows by (3-13). If condition (ii) is satisfied, then
log (e|y|r1)<0, rcosflog(e|y]|r=t)<hlog(e|y|r ),

and the result follows as before.

F)~[ et dt| = 0

Let R be any large number such that R—} is an integer and R>¢|y |, and let 6, be
th le defined b
e angle defined by h = Rcost,,

Lemma 8. If | n | <3n, then

0<60<%‘7T-

The contours L,, L, each follow the real axis from ¢ = £ to ¢ = -+ 00, but L, passes above
each point ¢ = n (where 7 is an integer), while L, passes below such points. The contour
M, is the part of the line £ (¢) = & described upwards from the real axis, while the
contour M, is the part of this line described downwards from the real axis. The contours
N,, N,are arcs of the circle | {| = R; 0<<f<f,on N; and —0,<<0<0 on N,. Condition
(ii) of Lemma 7 is satisfied on N, and N,. Hence

<K|y|"R1-vexp{Rsin (0 —n—2m)}

1— e~27rit

<Kly|hR—l—w

on Ny, since 0<O<$m and y>= —37. Similarly

g(t) I <K |yt R 1o

e27rit —1

g(t) dt g(t) dt

n 1— e—2m‘t 3 N, me'l_ 1

on N,. It follows that

each tend to zero as R—o0. Hence

t) dt t)dt
L 1gi_( e)—2m't :fMl Ig_( 8)—27ril =B, (say),
1) di t)dt
g0d [ L0& . p, (say)

L, g2mit __ | - M, e2mil __ |

by Cauchy’s theorem. The convergence of these integrals is ensured by Lemma 7.

Vor. 238. A. 54
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Using Cauchy’s theorem once more, we see that

Ry [ L% [ swd

L eZm’t —1 I 82711'1‘ —1

= Bz—“Bl""Ah
¢ 14
where 4, = L{lfg ‘i—)znit“éffig%"j}dt

=[ ewa=["gwa

since g(¢) is regular when 2 () = /.
On M, and M,, #(¢) = h. Hence on M, by Lemma 7

Ilfgt‘}ﬁt <Kr1=o |y |"exp {rsin (0 —n—2m)}
<Ky,
since 7= — 3. It follows that | B |<K|y|"
Similarly By <K |y |

Lemma 8 follows at once from (3-43) to (3-46).
For w> 0 we write

J(w) :Jw V32 exp {w(v—1—vlogv)}dv.
hlw
Then we shall prove

Lemma 9. If B(y) <0, then

0 dt1 K|y "
RG>0, then | [0 de] <K|y K| g5 e | JA0))

We suppose that 0<<y<<3w. The proof for negative 7 is similar.

(3-43)

(3-44)

(3-45)
(3-46)

(3-47)

(3-48)

If In <y <3m, 0<O< }mand either of the conditions of LLemma 7 are satisfied, we have

|g(t) | <K|y|"rt-oexp {rsinfd(0—7)}
<Kr=1=o|y |

Consider the contour formed of the real axis from ¢ = % to ¢ = R, the arc of the circle
|¢] = R from 0 = 0 to 0 = 0, and the straight line.%(¢) = & from argt = 0, to arg ¢ = 0.
Within this contour g(¢) has no poles and the integral of g(¢) along the second and third

parts is
O(y”er‘l“‘” dr) = O(y")

as R—co. (3-47) follows by Cauchy’s theorem.
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If o<y <im 0<O<y and either of the conditions of Lemma 7 are satisfied, we have
| g(t) [<Krt= ]y |".

Now consider the contour formed of the following four parts: the real axis from ¢ = 4
to ¢ = R; the arc|¢| = R from argt = 0 to arg¢ = 7; the straight line arg¢ = 5 from
|{] =R to |t| = hsecy; and the straight line £ (f) = & from arg¢=# to argt= 0.
Condition (ii) of Lemma 7 is satisfied on the second part of the contour, while condition

(1) is satisfied on the fourth part. Hence f g(t) dt taken along these two parts of the con-
tour is O(y"*) when R—oco. Hence
[ewar=] gatow), (349)
h 2
where D, denotes the part of the straight line arg¢ == 5 described outwards from the
point ¢ = /h-+ihtany to infinity. On D,, by (3-42),
[ 6) | < K= exp {reosy log (¢ y | 7}

= K|y [ vt=# exp{ % (y) v(1 —logv)}
if £ = yv. Hence

@0

szg(t) dt‘<K |yt | vi=2@ exp { £ (y) v(1—logv)}dv

hR(y)
= K|yt=ev | J(R(y))-

(3-48) follows from this and (3:49).

Lemma 5 follows at once from Lemmas 8 and 9 when % (y) <0. When % (y) >0 we
have only to prove

Lemma 10. J(w) <K min (1, w™%).

3:5. Proof of Lemma 10. First we suppose 0<<w < he™1, so that log (#/w) >1. We write

A(v) = wv—w— (wv—h) log v,
Y oy hw

so that A'(v) —E—wlogv, A" (v) =— 32—, <0
Hence for v=h/w A (v) <A (hJw) = w—wlog (h/w) <0,
and so A(v) <A(hjw) = h—w.
Hence J(w) :Jw vi= 2@ ~hexp {A(v)}dv

hlw

<eh‘wf°o v%‘g““"”dv<wav“1‘“ dv =K (3-51)
hlw e

by (3:13).

54-2


http://rsta.royalsocietypublishing.org/

A
N
. 0

/

e

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\

3

Py

///

AL

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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Next we suppose w>he ! >K. If 0<v<2and ifu =v—1,

uv) =v—1—vlogv =u—(1-u)log (1+u)

u? us
Traetas

u? u o u?
_M#Qw(lufufrﬁ__ )

u? (v—1)2
S ———
=3 3

We divide the range of integration in J(w) into three parts, in which

h

w

e

<<y, dsv<y, i<

J 2

POl

3

respectively, and call the corresponding integrals J,, J,, J;. Of these parts the first will
not exist if /w >4, and we then take J; = 0. If h/w<}, that is, if w > 2/, we have

3 b —p)2
A :f 2@ expluwp(v)}dv< | vEE@ exp{—@(}——vz}dv
hlw

hfw 3
: wy [t o, #(2) g
<exp|—-5 v v
= p( 12)L

lw

<K exp ( —{%) max (1, w?/l(oc)--.}+e> < Kwt.

Next J, <J§v%“9”“’ exp {wu(v)}dv < Kf?exp —tw(v—1)%dv

<wa exp (—3wu?)du = Kw-*.

Again, when v>1, z'(v) = —logv <0, and so, when v>3,

p)<p(3) = — K, wlp() —.ﬂ(%)KK(ﬂ(v)fﬂ(%))-

Hene Jy<exp {up(@)}| v exp (K (u(o) —(3))}do

2

o0

= Kexp (“—Kw)f vi= 2 exp {Ku(v)}dv < Kw™,

3

since the last integral is convergent and independent of w. Since J(w) = J,+Jy+J;,

it follows that

J(w) <Kw3, (3-52)

when w>he™ 1. ~
(3-51) and (3-52) together give Lemma 10.
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Proor or THEOREM 5
4-1. We now suppose the conditions of Theorem 5 to be satisfied. Since
|arg X | =47+,
we have dsecy(3m+o)<|argx—tanylog|x||<w
by (1-31) and (1-33). Hence
|arg (—x) —tany log | x || <m—dsecy($n+-0)

and so mcosy-+cosy arg (—«x) —siny log | x| =0(37+0). (4-11)

We choose % so that h,<<h<<h,+¢, h is not an integral multiple of #(«), and £(%)
(defined in (2-12)) has no poles for /1, <7 (kt) <h. By Lemma 1, we may suppose /1,0,

so that 2> 0. We write
w="h—h,>0, r=|t|, 0=arg/(«t),

and take m a positive integer. We use D to denote the straight line #£(«¢) = hand C,,
to denote the arc of the circle | ¢| = m+} to the right of D;. If m> K, no poles of
k(¢) lie on C,,.
Lemma 11. (1) On Dy, E(E) | <Kr-t-e| X | (4-12)
(ii) lim | (¢) dt = 0. (4-13)
m=>® & Ciy

We suppose that ¢ lies on C,,,, (with m>K) or on D; (with | | > K). Then, by (2-21)

241
and (2-41), | k(2) | <Kre=len, (4-14)

where vy = v,(r,0,x) = rcos (0 —y)log | x | —rsin (§—y) arg (—x)
—r | sin (0 —y) | +0r cos 6{1 —log (dr)}+ drf sin 0 -+ dor.
If >0 and 6>y, we have
v, = rcosf (cosy log | x | +siny arg (—x) +msiny+0{1 —log (0r)})
+rsinf(siny log | x| —cosy arg (—x) —mcosy +0d0) -+ dor
<drcosf log (K| X|r1) 4 0rsin (6 —4m) +dor(1—sin b)
<drcosf log (K| X|r~)+0r{sin (0 —4m) +1 —sin 0} (4-15)

by (4:11) and since o< 1.
Let us now suppose ¢ on D; then 0rcosd = .7 («t) = h. Hence, if >0,

i . (k7 1
0 = é~ar051n(—r) = §+0(;),

and so 0>y for | ¢|> K. Hence
v,<K+hlog (| X|r 1)

by (4-15) and | k(2) | < Kre=h=1| X |F = Kr~1-o | X |
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by (4:14). For <0 and | ¢| > K, this result may be proved similarly, while, for | ¢ | <KX,
we have | £(¢) | <K | X |*. This completes the proof of (4-12).

Next, since 1—(14w)cosw = —w-+Lw?- O0(w?)
for real w, we can find a number K, (of type K) small enough to ensure that
1—(1+w)cosw<0, (4-16)
when 0 <w< K,. We also take K, <{n—|y|. We divide C,,, into three parts, viz.
C'(hn—K,<0<im), C'(0]<ir—K),
C"(—n<0<—in+K,)).

On (', 0>0and 6 >y; hence (4-15) holds good. Writing w = {7—6, we have 0 <w < K|,
and so, by (4:16),

v,<drcosf log (K| X|r™1)+dr(1—cosw—wcosw)
<drcosflog (K| X|r1)<hlog (K| X|r 1),
if r = m+ % is large enough to make the logarithm negative. Hence

|k(f) | <Krle=h=1| X |h == Ky=1-0| X |

by (4-14), and so fC,k(t) dti <Km=| X|*—=0 (4-17)
as m-—> 0o.

We may prove similarly that f k() dt—o0 (4-18)
as m—>oo. ‘

Finally, on C”, we have cos/ =sin K. It follows from the definition of v, that

v, <Kr(l+log | X|)—drsin K, logr
and so f k(t) di >0 (419)
o

as m—>00. (4-13) is an immediate consequence of (4-17), (4-18) and (4-19).
Now let j; = [#/.Z (k)]. It follows from (4:13) by Cauchy’s theorem that

J00= £ i = o KO @)

1
e

[ kD) dt'

— 0+ o(xe["rivar)

and so | f(x) —H(—x) | <O(x/1)

= O(X") = O(X"re).,
This is Theorem 5.
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Proor or THEOREMS 7 AND 8

5-1. Let us suppose that conditions (iii), (iv) and (v) of Theorem 7 are satisfied. We
write @ = ;. ;,

8 = Tlet0) i Uy 3 o

p) & «d, }

_ 3
and Si(x) _Eo Tknta)
Then, when % (kt) > h,, $,(£) is regular apart from a finite number of poles; also
[:(8) [ <K (5-11)

provided .72 (k¢) >h, and | t| > K. We have also

F®) = 3 x4, S(k, 3 2) -+, (3)

m=1

in the notation of Lemma 6 and so, by that lemma,

M
S = % XN 3 A, K () 40
|arg X, | < gm0, m=1

— S IX) AR 0. (512)

|arg X;| < 37+0,
So far we have made no assumptions with regard to « and arg X. Now let us take

1
ﬁ(7<)>%, |arg X | <$m+u, (5-13)
where x satisfies condition (i) of Theorem 7. We take ¢, = xin (5-12); this is legitimate

since 0 <u<<im. Now, if s540,

2sm cosy
0}

2mcosy
0}

|arg X, | = |arg X+ |arg X |

=

. mcosy m
since 7y =,u<-—§——~——§.

Hence | arg X, | <47+ 0, is true only for s = 0 and the first sum on the right-hand side
of (5:12) contains one term only, viz. /(X). Hence

S(x) = I(X) +/1(x) +-0(x7), (514)
whenever (5-13) is satisfied.
Next let us take Ji’(-llg) =14, m—y <arg X<im, (5-15)
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where 4’ satisfies condition (i) of Theorem 8. Then X" - X and X" = X ;. Also
arg X, = arg X s,

and so, if 540 and s+ —1, larg X, | =a>dm-+u'.

On the other hand, |arg X_; |<{7+ux. Hence, if we take ¢, = 4’ <4m in (5-12), that

formula becomes
S(x) = I(X') +1(X") +/1(x) + O(x71). (5-16)

Similarly we may prove (5-16) when

a(l) -
K

Since we may suppose %,>>0 by Lemma 1, Theorems 7 and 8 follow at once from
(5-14), (5-16) and the following lemma.

[

, —im<arg X< —dm-p-u.

Lemma 12. If fz(%)% hy=0, |argX|<imtu,
i (TCOSY _mm
where , O<,u<m1n( 5 5 2)

when JZ(%) 1 and = 0 when R(%) — 1, and if conditions (i), (iv) and (v) of Theorem 7 are
satisfied, then
Fi(x) = H(—2x) +0(X'e) 1- O(Xi-2eX E(X)). (517)

We write H,(—x) for the sum of the residues of

kl(t) . 7T¢l(t) (”“x)i_

sinwt'(kt-+a)

at its poles to the right of the line J7(«t) = £, other than those at t=1,2,.... Then
H,(—x)— H(—x) 1s the sum of the residues of

m(—x)* L

sin ¢ (T(Kt+ﬁ) I'(«t-+a)

m(—x) M x4

k() —k(2) =

() $1(2) )

m

Sil’l?Tt 771:1[‘(Kt“|“05m)

at its poles to the right of the line % («t) = h, except those at £ = 1,2, .... But #,>>0 and
so k,(¢) —k(¢) has no other poles to the right of .#(«xt) = h,. Hence

Hy(—x) = H(—x). (5-18)
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5:2. Proof of (5:17) when | arg X | =4n. In Theorem 5 we write 0 for o, « for £, ¢,(¢)
for ¢(2), f(x) for f(x) and H,(—x) for H(—x). Conditions (i) and (ii) of Theorem 5 are
satisfied and condition (iii) becomes

| $(0) | <K [t]rnt, (5:21)
Now R(a) +hy,—2=0
by (2-32), and so (5-21) is a consequence of (5-11). Hence Theorem 5 gives the result
i) = Hy(— )+ O(Xt+) — H(—x) +O(X7+)
by (5-18); and (5-17) follows.

5:3. Proof of (5:17) when | arg X | <<}n.* We write £ == arg X and choose K, so that

0<K,<}m—max|arg («t')|,
t/

where ¢’ runs through all the poles of £,(¢) to the right of #Z(kt) = £,.

First let | ¢ |<im—K,. We can choose 4, so that ¢,(¢) is regular and satisfies (5-11)
wherever % («t) >h;. Then the conditions of Theorem 4 are satisfied with M = 0,
¢ = K,, fi(x) for f(x), ¢,(¢) for ¢(t) and « for f; and so f;(x) = O(X~%X). Since
A(X)=|X| sin K,>K|X|, we have

H(—x) = O(X%) = O(X1-2¢¥)
and (5-17) follows at once.

Next let §7— K, <|§, | <im. We shall suppose that

37— Ky <E<dm; (5-31)

the proof for —in<{< —}n+ K, is exactly similar.
From (5-31) it follows that 0 <{ < }m and so that

O0O<argx—tany log| x| <dndsecy<m.

Hence —mn<arg (—x)—tanylog | x| <0,
and so arg (__x) = argx—.

— )\t . ¢
Hence k() = mhy(f) (—x)" 2m@, (¢) x

Csinmt (ko) (1) T'(kt+a)

We choose /4 so that &, <<h<h,+e¢, & is not an integral multiple of 7 (x), and £, (¢) has
no poles for which 4, <<% («t) <h. Since h,>0, we have 2>0. We write

Ji =R K)], ©=h—h>0, r=]|t|, 0=arg(ki).

* The reader will note that the subsequent proof and result is uniform in arg X in this interval;
that is, the constants implied in the error terms do not depend on arg X however near arg X may be to
+ 7. A trivial modification would make the proof apply to arg X = + 1, but this is unnecessary in
view of what we have proved in §5-2.

Vor. 238. A. 55
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The number m is a positive integer, R = m+4, and the contour I, is made up of the
three parts:

, T . (R ~
Tm(r =R, — 5 “Farc sm(5\—1—3)<5§§),

Iy (0 =¢&, hd1secE<r<R),
T”’(.%’(Kt) — h,— " 1 arc sin(£)<6<g)
m > 2 OR) =7 )2
the whole described in a counter-clockwise direction. We write
1 4 " "
G =5 f ) de =G 4Gy G

where G,, G,, G, are the corresponding integrals along I, I, I'". The results of

mr m*

letting m — co in I, and I, are denoted by I"” and I™”, while the limits of G,,, G,,, G»,
G,, as m—> o are denoted (if they exist) by G, ¢', G", G”.

By our choice of K, there is no pole ¢ of k,(¢) such that .Z(kt')=h and
arg («t') = §m—K,. Since {>{n— K,, it follows that all the poles of %,(#) to the right
of the line /£ (xt) = h lie to the right of the contour formed by I and I"”. Hence, by
Cauchy’s theorem, G (if it exists) is equal to the sum of the residues of £,(£) to the
right of the straight line. % (kt) = £, i.e.

— Hy(~3) = (3) + O(w)
Hence, by (1:36) and (5:18),

Fi(x) = H(—x) +G-+ O (X" (5:32)

We take m large enough to ensure that every point of 17, and so every point of I,,,
is a finite distance from every pole of k,(¢). Let ¢ lie on I',,. Then

| e27it—1 | > K max {1, ¢~ 277 sin(0=)}
and, by (2-41) and (5-11), | k1 (8) | << Krd=72t@grs,
where vy = r{cos ( —y) log | x| —sin (0 —7y) arg x+d cos (1 —log (d7))
-+ 00 sin 0 4 min (0, 2m sin (6 —7))}

= drcosf lo e| X +drsin (0 —§) -+ min {0, 2nrsin (6 —y)}.
S\ or

Now —im<f0<E If 0<<OE,
vy<< Orcosd log (e| X |8-1r~1) (5-33)
= drcosf log (K| X|r1).
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If —3n<0<0, then sin /<0 and

0—£+%7Icosy> %ﬂcosy~7r>o,
since (%Sl =j?(,l;) >1
e| X|\ 2m. . 27 cosy
and so V3 < 07 oS ﬂ{log( 5 )—? smy}—!—&rsm 0(9—g+ 5 )
< Jrcos ﬂ{log (e |(§;Y I) — %z—rsin 7} <drcosflog (ﬂri.Y.l) .
Hence on I, vy<drcosf log (K| X|r1). (5-34)

We now consider /,,. On this contour
drcosf=h, log(K|X|r1)<o0,
provided R is sufficiently large. Hence
vy<hlog (K| X|R™1)

by (5-34) and so |k (2) | <KRE-2@-h| X "< K| X [P R™1-¢
by (2-32). Hence |G, |<K|X|"R*—>0
as R—o0,1.e. G' = 0.

Next we consider I,. On this drcos§ = & and so, by (5:34),

vy<hlog (K| X|r™Y), |k(t)|<K|X|tr-1-o.

Hence G” exists and G” = O(X?).
Finally we consider 7,. By (5-33),

vy<drcos§log (e| X|6-1r 1)

and so G” exists and

0

|G"| <th k=@ exp{&r cos¢ log (e—[?rﬁ)} dr

S lsecé

= K| ‘X'I%“g”""f00 vi=2@ exp{ £ (X) v(1—logv)} dv
hIA(X)
= K| Xt-#2@eX | J(A(X)) = O(X#-2@eX (X))
by Lemma 10.
Hence G exists and

G=G+G"+G" = 0(X")+0(X 20 X E(X)). (5-35)
Finally (5-17) is a consequence of (5-32) and (5-35), since £ <h,+e¢. This completes

the proof of Lemma 12.
55-2
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SUMMARY

The function considered is
J&®) = cpt+eyxtex4...,
$(n)

Where Cn = m) 3
k and £ may be real or complex, 7 («) >0 and ¢(¢) is regular and has an asymptotic
-expansion in descending powers of ¢ not necessarily integral powers to the right of the

line % (kt) = h,.

If.Z (%) <4, the function has one or more exponentially large expansions for all large

x in the complex x-plane. If. % (%) > %, the plane is divided by two spirals into two con-

nected parts; in the interior of one part an exponentially large expansion is valid, in
the interior of the other the expansion is algebraic, while in the neighbourhood of the
spirals the expansion is mixed, i.e. a sum of the expansions in the two regions. If
T (%) = 1 the spirals coincide; there is an exponentially large expansion at a distance
from the spiral and a mixed expansion in the neighbourhood of the spiral.

The results for the single expansion are similar to Watson’s, but our conditions on
P(t) are less severe than his. The results for the mixed expansions are new. Amongst
other applications, the latter would enable us to determine the distribution of the
zeroes of the function very precisely.

Particular examples of the function have been studied by Mittag-Lefller, Barnes,
Hardy and others. The results here include theirs as special cases.

The calculation of the coefficients in the exponential expansion is greatly shortened
and the results are given in a simple form which should facilitate applications to
particular problems. The method of proof is based on Cauchy’s theorem and on
principles similar to those of the method of steepest descent, but the complications
of the latter method are wholly avoided.
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